Use seaborn to Plot Histogram in Python (3 Examples)

Introduction

You can use histplot() from seaborn module to do the histogram plot. The following provides 3 examples. The following is the basic syntax of using histplot() for the examples.

Example 1: Core syntax

sns.histplot(data=dataset, x=’column_name’)

Example 2: Group by the histogram

sns.histplot(data=dataset, x=’column_name’, hue=’column_groupby’)

Example 3: Add a kernel density estimate

sns.histplot(data=dataset, x=’column_name’, kde=True)

1. Example 1

The following provides a basic example of plotting histogram in Python. We use a built-in sample dataset called penguins in seaborn. We use the column of body weight as the focus for histogram.

import seaborn as sns
penguins = sns.load_dataset("penguins")
sns.histplot(data=penguins, x="body_mass_g")

Output:

Histogram in Python
Histogram in Python

The histogram above shows the count numbers for each weight for the penguins. Thus, by plotting it, it provides us insight how the weigtht distribution looks like.

2. Example 2: Group histogram based on another variable

There are 3 different species in the data. Thus, we can group the histogram based on species by adding the column name to the hue.

Artwork by @allison_horst
# group the histogram based on species
sns.histplot(data=penguins,x="body_mass_g",hue='species')

Output:

Histogram Groupby Another Variable in Python
Histogram Groupby Another Variable in Python

3. Example 3: add a kernel density estimate to histogram

We can set kde to be True to add a kernel density estimate to histogram.

sns.histplot(data=penguins,x="body_mass_g",hue='species',kde=True)

Output:

Histogram with kernal density estimate in Python
Histogram with kernal density estimate in Python

Further Reading